Substrates for efficient fluorometric screening employing the NAD-dependent sirtuin 5 lysine deacylase (KDAC) enzyme.
نویسندگان
چکیده
The class III lysine deacylases (KDACs), also known as the sirtuins, have emerged as interesting drug targets for therapeutic intervention in a variety of diseases. To gain a deeper understanding of the processes affected by sirtuins, the development of selective small molecule modulators of individual isozymes has been a longstanding goal. Essential for the discovery of novel modulators, however, are good screening protocols and mechanistic insights with regard to the targets in question. We therefore evaluated the activities of the seven human sirtuin hydrolases against a panel of fluorogenic substrates. Both commonly used, commercially available substrates and novel chemotypes designed to address recent developments in the field of lysine post-translational modification were evaluated. Our investigations led to the discovery of two new fluorogenic ε-N-succinyllysine-containing substrates that enable highly efficient and enzyme-economical screening employing sirtuin 5 (SIRT5). Furthermore, optimized protocols for facile kinetic investigations were developed, which should be valuable for enzyme kinetic investigations. Finally, these protocols were applied to a kinetic analysis of the inhibition of SIRT5 by suramin, a potent sirtuin inhibitor previously shown by X-ray crystallography to bind the substrate pocket of the human SIRT5 KDAC enzyme.
منابع مشابه
Peptide Arrays Identify Isoform-Selective Substrates for Profiling Endogenous Lysine Deacetylase Activity
This paper reports the development of a class of isoform-selective peptide substrates for measuring endogenous lysine deacetylase (KDAC) activities in cell culture. The peptides were first identified by comparing the substrate specificity profiles of the four KDAC isoforms KDAC2, KDAC3, KDAC8, and sirtuin 1 (SIRT1) on a 361-member hexapeptide array wherein the two C-terminal residues to the ace...
متن کاملThe emerging and diverse roles of sirtuins in cancer: a clinical perspective
Sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD(+))-dependent protein lysine modifying enzymes with deacetylase, adenosine diphosphateribosyltransferase and other deacylase activities. Mammals have seven sirtuins, namely SIRT1-7. They are key regulators for a wide variety of cellular and physiological processes such as cell proliferation, differentiation, DNA da...
متن کاملAlkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster
Sirtuins are enzymes that catalyze NAD+ dependent protein deacetylation. The natural polyphenolic compound resveratrol received renewed interest when recent findings implicated resveratrol as a potent SIRT1 activator capable of mimicking the effects of calorie restriction. However, resveratrol directly interacts with fluorophore-containing peptide substrates. It was demonstrated that the SIRT1 ...
متن کاملAn improved fluorogenic assay for SIRT1, SIRT2, and SIRT3.
Sirtuins are NAD-dependent lysine deacylases that play critical roles in cellular regulation and are implicated in human diseases. Modulators of sirtuins are needed as tools for investigating their biological functions and possible therapeutic applications. However, the discovery of sirtuin modulators is hampered by the lack of efficient sirtuin assays. Here we report an improved fluorogenic as...
متن کاملSubstituting Nε-thioacetyl-lysine for Nε-acetyl-lysine in Peptide Substrates as a General Approach to Inhibiting Human NAD+-dependent Protein Deacetylases
Inhibitors of human NAD(+)-dependent protein deacetylases possess great value for deciphering the biology of these enzymes and as potential therapeutics for metabolic and age-related diseases and cancer. In the current study, we have experimentally demonstrated that, the potent inhibition we obtained previously for one of these enzymes (i.e. sirtuin type 1 (SIRT1)) by simply replacing N(epsilon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medicinal chemistry
دوره 55 11 شماره
صفحات -
تاریخ انتشار 2012